NCP3011, NCV3011
Boost Voltage
18
Voltage Ripple
16
14
12
10
8
6
4
2
0
Maximum Allowable Voltage
Maximum Boost Voltage
4.5
6.5
8.5
10.5
12.5
14.5 16.5 18.5
20.5
22.5
24.5
26.5
Input Voltage (V)
(Clarity on Boost Max and Ripple Def)
Figure 41. Boost Voltage at 80% Duty Cycle
Inductor Selection
When selecting the inductor, it is important to know the
input and output requirements. Some example conditions
are listed below to assist in the process.
Table 1. DESIGN PARAMETERS
Design Parameter Example Value
V OUT ) V LSD V OUT
D + [ D +
V IN * V HSD ) V LSD V IN
(eq. 8)
3.3 V
3 27.5% +
12 V
The ratio of ripple current to maximum output current
simplifies the equations used for inductor selection. The
Input Voltage
(V IN )
9 V to 18 V
formula for this is given in Equation 9.
Nominal Input Voltage
Output Voltage
(V IN )
(V OUT )
12 V
3.3 V
ra +
D I
I OUT
(eq. 9)
Input ripple voltage
Output ripple voltage
Output current rating
Operating frequency
(VIN RIPPLE )
(VOUT RIPPLE )
(I OUT )
(Fsw)
300 mV
50 mV
8A
400 kHz
The designer should employ a rule of thumb where the
percentage of ripple current in the inductor lies between
10% and 40%. When using ceramic output capacitors the
ripple current can be greater thus a user might select a higher
ripple current, but when using electrolytic capacitors a lower
F +
1
V OUT
A buck converter produces input voltage (V IN ) pulses that
are LC filtered to produce a lower dc output voltage (V OUT ).
The output voltage can be changed by modifying the on time
relative to the switching period (T) or switching frequency.
The ratio of high side switch on time to the switching period
is called duty cycle (D). Duty cycle can also be calculated
using V OUT , V IN , the low side switch voltage drop V LSD ,
and the High side switch voltage drop V HSD .
(eq. 6)
T
ripple current will result in lower output ripple. Now,
acceptable values of inductance for a design can be
calculated using Equation 10.
L + @ (1 * D) 3 3.3 m H
I OUT @ ra @ F SW
(eq. 10)
3.3 V
+ @ (1 * 27.5%)
8 A @ 23% @ 400 kHz
The relationship between ra and L for this design example
is shown in Figure 42.
D +
T ON
T
( * D +
T OFF
T
(eq. 7)
http://onsemi.com
21
相关PDF资料
MIC2505BM IC SW HIGH SIDE SGL 2A 8SOIC
MIC2505-2BM IC SW HIGH SIDE SGL 2A 8SOIC
MIC2505-1BM IC SW HIGH SIDE SGL 2A 8SOIC
TAAB106K020G CAP TANT 10UF 20V 10% AXIAL
MC34063LBBEVB EVAL BOARD FOR MC34063LBB
A9BAG-0502F FLEX CABLE - AFF05G/AF05/AFE05T
EBM08DTMD-S189 CONN EDGECARD 16POS R/A .156 SLD
RCM06DSUI CONN EDGECARD 12POS DIP .156 SLD
相关代理商/技术参数
NCP3012 制造商:ONSEMI 制造商全称:ON Semiconductor 功能描述:Synchronous PWM Controller
NCP3012DTBR2G 功能描述:电压模式 PWM 控制器 Single Output Buck 0.8V to 40V 70uA RoHS:否 制造商:Texas Instruments 输出端数量:1 拓扑结构:Buck 输出电压:34 V 输出电流: 开关频率: 工作电源电压:4.5 V to 5.5 V 电源电流:600 uA 最大工作温度:+ 125 C 最小工作温度:- 40 C 封装 / 箱体:WSON-8 封装:Reel
NCP301HSN09T1 功能描述:电压监测器/监控器 0.9V Detector RoHS:否 制造商:Texas Instruments 监测电压数:2 监测电压:Adjustable 输出类型:Open Drain 欠电压阈值: 过电压阈值: 准确性:1 % 工作电源电压:1.5 V to 6.5 V 工作电源电流:1.8 uA 最大工作温度:+ 125 C 封装 / 箱体:SON-6 安装风格:SMD/SMT
NCP301HSN09T1G 功能描述:电压监测器/监控器 0.9V Detector w/Reset High RoHS:否 制造商:Texas Instruments 监测电压数:2 监测电压:Adjustable 输出类型:Open Drain 欠电压阈值: 过电压阈值: 准确性:1 % 工作电源电压:1.5 V to 6.5 V 工作电源电流:1.8 uA 最大工作温度:+ 125 C 封装 / 箱体:SON-6 安装风格:SMD/SMT
NCP301HSN10T1 制造商:ONSEMI 制造商全称:ON Semiconductor 功能描述:Voltage Detector Series
NCP301HSN11T1 制造商:ONSEMI 制造商全称:ON Semiconductor 功能描述:Voltage Detector Series
NCP301HSN12T1 制造商:ONSEMI 制造商全称:ON Semiconductor 功能描述:Voltage Detector Series
NCP301HSN13T1 制造商:ONSEMI 制造商全称:ON Semiconductor 功能描述:Voltage Detector Series